© mymathscloud

Unit Circle: $(\cos x, \sin x)$

How do we use the unit circle?
Locate the start place at 0°. This is our starting point.
The coordinates indicated at each of the angles give us the value of the trig functions (cos and \sin) for that particular angle. The angles have been given in degrees and radians (the corresponding radian measures are right above the ${ }^{\circ}$ measures and have just been included for completeness most courses will use degrees to introduce this topic so you can ignore these parts at first).

The x coordinate gives us the value of \cos and the y coordinate gives us the value of \sin for each angle shown. We go round in an anti-clockwise direction to get the values of \sin and \cos for angles from 0° to 360° as shown.

Note:

- We can also go around the unit circle in a clockwise direction will find the trig values for negative angles such as $-30,-60,-90^{\circ}$ etc. -30° clockwise will give the same value as 330° anti-clockwise.
- We can also go around the unit circle again to find the trig values for angles bigger than 360° such as $390^{\circ}, 405^{\circ}, 420^{\circ}, 450^{\circ}$ etc

Summary Table Of Values For The Unit Circle Above

Multiples of 30° and 45° : $30^{\circ}, 45^{\circ}, 60^{\circ}$ etc												
	30°	45°	60°	120°	135°	150°	210°	225°	240°	300°	315°	330°
$\underset{(y \text { coordinate })}{\sin \theta}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
$\underset{(x \text { coordinate })}{\cos \boldsymbol{\theta}}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\begin{gathered} \boldsymbol{\operatorname { t a n } \theta} \theta \\ \left(=\frac{\sin \theta}{\cos \theta}\right) \end{gathered}$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$

Alternative method for finding angles of $30^{\circ}, 45^{\circ}$ and 60° etc: Use SOHCAHTOA

Alternative Method For Larger Angles (over $\mathbf{9 0}^{\circ}$)
From knowing the values of the trig functions for the acute angles above $\left(30^{\circ}, 45^{\circ}\right.$ and $\left.60^{\circ}\right)$, we can find the values of the trig functions for larger angles. First, recall the signs of the trig functions in each quadrant shown on the right. Also recall that going anti-clockwise gives us positive angles and clockwise gives us negative angles.
For example, if we know the trig values for 45°, we can also work out the trig values for $135^{\circ}, 225^{\circ}$ and 315°.

Multiples of $\mathbf{9 0}^{\circ}$: $\mathbf{9 0}^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{2 7 0}^{\circ}, \mathbf{3 6 0}^{\circ}$ etc

	0°	90°	180°	$270{ }^{\circ}$	$360{ }^{\circ}$
$\underset{(y \text { coordinate })}{\sin \theta}$	0	1	0	-1	0
$\underset{(x \text { coordinate) }}{\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }} \boldsymbol{\theta}}$	1	0	-1	0	1
$\begin{aligned} & \boldsymbol{\operatorname { t a n } \theta} \theta \\ & \left(=\frac{\sin \theta}{\cos \theta}\right) \end{aligned}$	0	∞	0	∞	0

Alternative method for multiples of $9 \mathbf{0}^{\circ}$:
Plot the 4 coordinates (0,1), (1,0), ($-1,0$), ($0,-1$)

$$
(x, y) \Rightarrow \frac{\text { Key: }}{(\cos \theta, \sin \theta)}
$$

This means the x coordinate gives us the value of \cos
the y coordinate gives us the value of \sin
for any of the angles $\boldsymbol{\theta}$ (the angles are represented on the axes)

For example
$\cos 90^{\circ}=x$ coordinate at $90^{\circ}=0$
$\cos 180^{\circ}=x \operatorname{coordinate}$ at $180^{\circ}=-1$
$\cos 270^{\circ}=y \operatorname{coordinate}$ at $270^{\circ}=-1$

We can also find negative angles by going clockwise
$\cos (-180)^{\circ}=y \operatorname{coordinate}$ at $-180^{\circ}=0$
These values can be summarised in $\mathbf{3}$ simple diagrams

$\sin \left(-90^{\circ}\right)=-1$

$\sin 0^{\circ}=0$
$\sin 90^{\circ}=1$
$\sin 180^{\circ}=0$
$\sin 270^{\circ}=-1$
$\sin 360^{\circ}=0$
etc
$\cos \left(-90^{\circ}\right)=0$
$\cos 0^{\circ}=1$
$\cos 90^{\circ}=0$
$\cos 180^{\circ}=-1$
$\cos 270^{\circ}=0$
$\cos 360^{\circ}=1$
$\cos 360^{\circ}=$
etc
$\tan \left(-90^{\circ}\right)=$ undef $\tan 0^{\circ}=0$
$\tan 90^{\circ}=$ undef $\tan 180^{\circ}=0$
$\tan 270^{\circ}=$ undef
$\tan 360^{\circ}=0$

We can do the same thing with 30° to get the values for the angles $150^{\circ}, 210^{\circ}, 330^{\circ}$ etc (just like we did for 45° on the page above on the left to get the values for the angles $135^{\circ}, 225^{\circ}$ and 315°). We can also do the same thing with 60° to get the values for the angles $120^{\circ}, 240^{\circ}, 300^{\circ}$ etc. The unit circle always works for negative angles, just go clockwise!

Worried and wondering how you can remember all this? We only need to remember the trig values for $0^{\circ}, 30,45^{\circ}, 60^{\circ}$ and 90°.

Pattern to help remember the table on the right					
	0°	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\frac{0}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{\sqrt{3}}{\sqrt{3}}$	$\frac{\sqrt{3}}{1}$	$\frac{\sqrt{3}}{0}$

$\begin{gathered}\text { simplify } \\ \text { the values }\end{gathered}$

Memorise this table					
	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

Take note of the pattern in the table above:

- For $\cos \theta$, we just reverse the order of $\sin \theta$
- $\sin \theta$ and $\cos \theta$ always have a square root in numerator and the denominator is always 2 .
$0,12,3,4$ in the numerator for \sin goes to 4,3,2,1,0 for \cos

- To help remember $\tan \theta$, you can also just do $\frac{\sin \boldsymbol{\theta}}{\cos \boldsymbol{\theta}}$

The colour pattern can also help you to remember $\tan \theta$.

We can use the symmetry of the unit circle as explained on the previous page, to get the trig values for angles larger than 90° and also negative angles.

Graphs of $\sin x, \cos x, \tan x:$

You'll also need to know the graphs of trig functions. Knowing the trig values for angles which are multiples of 90° helps to easily remember the graph. On a trig graph, the x axis represents the angles and the y axis represents the trig values.

Recall, that these values can be summarised in 3 diagrams:

$\sin x$	$\cos x$	$\tan x$
$\begin{aligned} & \sin 0^{\circ}=0 \Rightarrow(0,0) \\ & \sin 90^{\circ}=1 \Rightarrow(90,0) \\ & \sin 180^{\circ}=0 \Rightarrow(180,0) \\ & \sin 270^{\circ}=-1 \Rightarrow(270,-1) \\ & \sin 360^{\circ}=0 \Rightarrow(360,0) \end{aligned}$	$\begin{aligned} & \cos 0^{\circ}=1 \Rightarrow(0,1) \\ & \cos 90^{\circ}=0 \Rightarrow(90,0) \\ & \cos 180^{\circ}=-1 \Rightarrow(180,-1) \\ & \cos 270^{\circ}=0 \Rightarrow(270,0) \\ & \cos 360^{\circ}=1 \Rightarrow(360,0) \end{aligned}$	$\begin{aligned} & \tan \mathbf{0}^{\circ}=0 \Rightarrow(0,0) \\ & \tan 90^{\circ}=\text { undef } \Rightarrow \text { asymptote } \\ & \tan \mathbf{1 8 0 ^ { \circ }}=0 \Rightarrow(180,0) \\ & \tan \mathbf{2 7 0 ^ { \circ }}=\text { undef } \Rightarrow \text { asymptote } \\ & \tan \mathbf{3 6 0 ^ { \circ }}=0 \Rightarrow(360,0) \end{aligned}$
Once you have the positive x values the shape should be easy to spot for the negative x values etc (or you can use the diagrams clockwise to find the negative values too).	Once you have the positive x values the shape should be easy to spot for the negative x values etc (or you can use the diagrams clockwise to find all the negative values too).	Once you have the positive x values the shape should be easy to spot for the negative x values etc (or you can use the diagrams clockwise to find all the negative values too).
The sin graph is a symmetric about the origin.	The cos graph is symmetric about the y axis (y axis is a mirror line)	

The coordinates from the values have been indicated on the graphs below with a O

$$
y=\sin x
$$

$$
y=\cos x
$$

$y=\cos x$

$$
y=\tan x
$$

